Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure

نویسندگان

  • Byungmin Ahn
  • Enrique J. Lavernia
  • Steven R. Nutt
چکیده

The tensile properties and deformation response of an ultrafine-grained (UFG) Al–Mg alloy with bimodal grain structure were investigated using a micro-straining unit and a strain mapping technique. Atomized Al 5083 powder was ball-milled in liquid N2 to obtain a nanocrystalline (NC) structure, then blended with 50 wt.% unmilled coarse-grained (CG) powder, and consolidated to produce a bimodal grain structure. The blended powder was hot vacuum degassed to remove residual contaminants, consolidated by cold isostatic pressing (CIP), and then quasi-isostatic (QI) forged twice. The resultant material consisted of a UFG matrix and CG regions. The dynamic response during tensile deformation was observed using a light microscope, and the surface displacements were mapped and visualized using a digital image correlation (DIC) technique. The DIC results showed inhomogeneous strain between the UFG and CG regions after yielding, and the strain was localized primarily in the CG regions. Strain hardening in the CG regions accompanied the localization and was confirmed by variations in Vickers hardness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy

The tensile fractures of ultrafine-grained (UFG) Al-Mg alloy with a bimodal grain size were investigated at the microand macroscale using transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with focused ion beam (FIB), and optical microscopy. The nanoscale voids and crack behaviors near the tensile fracture surfaces were revealed in various scale ranges and provi...

متن کامل

Discontinuous Dynamic Recrystallization during Accumulative Back Extrusion of a Magnesium Alloy

The study of nucleation mechanism of new grains during severe plastic deformation of magnesium alloys is of great importance to control the characteristics of final microstructures.  To investigate the role of discontinuous recrystallization, a wrought AZ31 magnesium alloy was deformed by accumulative back extrusion process at 330 °C.  The obtained microstructures were studied using optical and...

متن کامل

Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process

The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...

متن کامل

Developing ultrafine-grained materials with high strength and good ductility for micro-forming applications

Materials with ultrafine grain sizes are attractive for use in micro-forming operations. High-pressure torsion (HPT) is an effective technique that allows disc materials subjected to torsional deformation to generate microstructures with significant grain refinement. Generally, ultrafine-grained materials exhibit high strength but their ductility is limited because they have both a low rate of ...

متن کامل

Recrystallization texture during ECAP processing of ultrafine/nano grained magnesium alloy

An ultrafine/nano grained AZ31 magnesium alloy was produced through four-pass ECAP processing. TEM microscopy indicated that recrystallized regions included nano grains of 75 nm. Pole figures showed that a fiber basal texture with two-pole peaks was developed after four passes, where a basal pole peak lies parallel to the extrusion direction (ED) and the other ~20° away from the transverse dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015